Leitgeb’s paper1
% Sensitivity from [Performance of FD vs TD]
N = 2048;
rho = 0.4; % spectrometer efficiency rho
eta = 0.8; % detector quantum efficiency
tau = 14.2 * 10^(-6); % exposure time / s
h = 6.63 * 10^(-34); % planck constant / J * s
P_0 = 3 * 10^(-3); % power at the sample / Watt
gamma_s = 1; % part of input power on sample arm
gamma_r = 1; % part of input power on ref arm
c = 2.99 * 10^(8); % light speed m/s
lambda_0 = 820 * 10^(-9); % center-wavelengt / m
delta_lambda = 120 * 10^(-9); % FWHM bandwidth / m
nu_0 = c / lambda_0; % center-frequency / hz
e = h * nu_0; % electron charge
delta_nu = (pi / (2 * log(2)))^(1/2) * c * delta_lambda /[(lambda_0)^(2)]; % effective line width
R_r = 1; % reference arm reflectivity
% Sensitivity
a = 1/N * (rho*eta*tau*P_0/e)^2 * gamma_s * gamma_r * R_r;
b = (1/N*rho*eta*tau*P_0*gamma_r*R_r/e)*[1+1/2*(rho*eta/e)*(P_0/N)*gamma_r*R_r*(N/delta_nu)]+250*e;
sensitivity = 10*log10(a/b)
- For parameters in paper, it’s 94.5020 dB
- For our system, it’s 93.4097 dB
Choma’s paper2
%% Sensitivity from [Choma paper]
N = 2048;
rho = 0.6; % spectrometer efficiency rho
eta = 0.8; % detector quantum efficiency
tau = 14.2* 10 ^(-6); % exposure time / s
h = 6.63 * 10^(-34); % planck constant / J * s
P_0 = 3 * 10^(-3); % power at the sample / Watt
c = 2.99 * 10^(8); % light speed m/s
lambda_0 = 820 * 10^(-9); % center-wavelengt / m
delta_lambda = 120 * 10^(-9); % FWHM bandwidth / m
nu_0 = c / lambda_0; % center-frequency / hz
e = h * nu_0; % electron charge
%% Sensitivity
a = rho * eta * P_0 * tau;
b = 2*e;
sensitivity = 10*log10(a/b)
- For parameters in paper, it’s 120.1337 dB
- For our system, it’s 106.2625 dB
- Leitgeb, R., Hitzenberger, C. & Fercher, A. F. Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889-894 (2003). ↩
- Choma, M. A., Sarunic, M. V., Yang, C. & Izatt, J. A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183-2189, doi:10.1364/OE.11.002183 (2003). ↩